
QARTOD in Practice

Luke Campbell, Software Engineer, RPS ASA

Background

2

• We were asked to design, and implement software that would perform near realtime
QC for the Chesapeake Bay Interpretive Buoy System (CBIBS).

• The first step was understanding QARTOD and then implementing it as a software
module or service.

• We've successfully implemented and are applying QARTOD to CBIBS Station Data
• Minus waves (currently in progress, and scheduled to be done June)

Background

2

• We were asked to design, and implement software that would perform near realtime
QC for the Chesapeake Bay Interpretive Buoy System (CBIBS).

• The first step was understanding QARTOD and then implementing it as a software
module or service.

• We've successfully implemented and are applying QARTOD to CBIBS Station Data
• Minus waves (currently in progress, and scheduled to be done June)

QARTOD Tests in Practice

2

Here's a small demonstration of us downloading and running QC on the Toledo Low Se

Automating QC

2

1. Scheduler Creates a Job
2. Worker retrieves job off of job

queue.
3. Worker loads configuration

information
- Station and Sensor

Arrangements
- Test parameters

4. Retrieves a small set of recent data
5. Performs QC and saves the flags
6. Another worker regularly compiles

the flags and metadata into netCDF
files

Tests

2

The tests we have currently published and are available as a pure python package:
 - Location Check
 - Gross Range
 - Climatology
 - Spike
 - Rate of Change / Gradient
 - Flat Line
 - Attenuated Signal

We're currently in the middle of testing the tests for Waves.

https://github.com/asascience-open/qartod

https://github.com/asascience-open/qartod
https://github.com/asascience-open/qartod
https://github.com/asascience-open/qartod
https://github.com/asascience-open/qartod

Representing the Flags as Binary Elements

2

In the past, we looked at encoding each combination of test outcomes as a
bit-string.
After further research, I think we should take a simpler approach.

Encoding the Flags

2

Concerns that drive the design:
• Space
• Complexity
• Support for future tests
• Number of test output combinations
• Compression

Encoding the Flags

2

Space

For station, and time series data, we won't see a scale of data that will be
cause for alarm on modern architectures.

AWS charges $17.00 per month for 200GB SSD for a directly mounted EBS
Volume. AWS S3 charges $47.77 per month for a TB of data.

For a station with 30 sensors that each measure one floating point
observation every second and is deployed year round, the uncompressed file
will be 7.18 GB.

In summary, for modern architecture and managing station and time-series
data, incorporating additional QC flags with the data won't introduce an
enormous burden.

Encoding the Flags

2

Complexity

I've always preached for a long time that complex solutions have a real cost
associated with them. Simpler solutions allow for an easier adoption.

A key insight is that code is read much more often than it is written.

By using independent variables for each test, we gain:
• Simplicity
• No ambiguity in the results
• Easy to implement
• Easy to scale

Encoding the Flags

2

Support for future tests

I made some changes to the encoding scheme to support the potential for
future tests by extending all of the flag encoding sizes to unsigned 64 bit
integers. This extension allowed for every test to have 8 flags but limited our
ability to safely grow the number of tests without exceeding 64bits or
introducing new variables.

If we just include individual variables, we can have as many flags and as
many tests as we want, there's unlimited scalability.

Number of test output combinations

Individual variables can allow for up to 2^64 flags, although I would
recommend avoiding that many independent flags.

Encoding the Flags

2

Compression

Using just zlib compression, I was able to see a fairly large reduction in file
size compared to that of using a single variable with the encoding scheme.

A file with one QC variable using the encoding scheme took up 9MB for one
million points.

A file with 10 individual QC variables for all of the required, and recommended
tests (water level) took up 9.2 MB

So by sacrificing 0.2MB per one million observations we gain simplicity and
scalability.

Linear space growth for uncompressed datasets

2

Linear space growth for compressed datasets

2

Representing QC Flags: netCDF

2

 byte sea_water_salinity_rate_of_change_test(time) ;
 sea_water_salinity_rate_of_change_test:_FillValue = 9b ;
 sea_water_salinity_rate_of_change_test:long_name = "Sea water salinity rate_of_change_test
 sea_water_salinity_rate_of_change_test:comments = "This test inspects the time series for
 sea_water_salinity_rate_of_change_test:coordinates = "time longitude latitude" ;
 sea_water_salinity_rate_of_change_test:flag_vals = 1b, 2b, 3b, 4b, 9b ;
 sea_water_salinity_rate_of_change_test:flag_meanings = "GOOD UNKNOWN SUSPECT BAD MISSING"
 sea_water_salinity_rate_of_change_test:references = "http://www.ioos.noaa.gov/qartod/tempe
 sea_water_salinity_rate_of_change_test:coverage_content_type = "qualityInformation" ;

 byte sea_water_salinity_qc(time) ;
 sea_water_salinity_qc:standard_name = "sea_water_salinity status_flag" ;

sea_water_salinity_qc:_FillValue = 9b ;
sea_water_salinity_qc:flag_vals = 1b, 2b, 3b, 4b, 9b ;
sea_water_salinity_qc:flag_meanings = "GOOD UNKNOWN SUSPECT BAD MISSING" ;
sea_water_salinity_qc:references = "http://www.ioos.noaa.gov/qartod/temperature_salinity/q

Representing QC Flags: SOS-SWE

2

 <swe2:quality>
 <swe2:Category definition="http://mmisw.org/ont/ioos/swe_element_type/recordQuality">
 <swe2:constraint>
 <swe2:AllowedTokens>
 <swe2:value>1</swe2:value> <!-- Good, Passing -->
 <swe2:value>2</swe2:value> <!-- Not Evaluated -->
 <swe2:value>3</swe2:value> <!-- Suspect -->
 <swe2:value>4</swe2:value> <!-- Fail -->
 <swe2:value>9</swe2:value> <!-- Missing, theoretically you should never see this flag -->
 </swe2:AllowedTokens>
 </swe2:constraint>
 </swe2:Category>
 </swe2:quality>

2009-05-23T00:00:00Z,1,wmo_41001_sensor1,2,0,1,359.0,x,10.0,3,2,352.0,y,9.6
2009-05-23T01:00:00Z,1,wmo_41001_sensor1,1,2,2,345.0,y,10.4
2009-05-23T02:00:00Z,1,wmo_41001_sensor1,4,0,3,332.0,z,10.5,1,2,334.0,x,10.3,2,3,336.0,z,10.1,3,1,3
2009-05-23T00:00:00Z,3,wmo_41001_sensor2,3,0,13.7,1,16.8,2,19.2
2009-05-23T01:00:00Z,1,wmo_41001_sensor2,3,0,13.5,1,16.4,2,19.3
2009-05-23T02:00:00Z,4,wmo_41001_sensor2,3,0,13.4,1,16.5,2,18.8

CF Support

2

CF 1.6 Supports the notion of a primary QC flag with the standard_name attribute set to "s

For CBIBS we've omitted the standard_name attribute for the variables that represent a si

It would also be good to identify some set of attributes that pertain to QARTOD that identif

seawater_temperature_range_check:qartod_test = "range_check" ;

Client Support

2

The QARTOD Primary QC flags follow the CF convention for status flags and any client tha

Clients that wish to interface with the individual QARTOD tests will need to be customized

Challenges

2

• Metadata Support
• Tried out bit string encoding
• CF and standard_name support

• Archival
• Do we archive individual tests or just the primary flag?

• Software Architecture for running QC in a timely manner.
• Flags with complex dimensions

Questions?

2

Image courtesy of XKCD (http://xkcd.com)

http://xkcd.com

Discussion

2

	QARTOD in Practice
	Background
	Background
	QARTOD Tests in Practice
	Automating QC
	Tests
	Representing the Flags as Binary Elements
	Encoding the Flags
	Encoding the Flags
	Encoding the Flags
	Encoding the Flags
	Encoding the Flags
	Linear space growth for uncompressed datasets
	Linear space growth for compressed datasets
	Representing QC Flags: netCDF
	Representing QC Flags: SOS-SWE
	CF Support
	Client Support
	Challenges
	Questions?
	Discussion

