Service Oriented Architecture as a Tool of Navy METOC Transformation

John Lever (N6B)
12 Mar 2009
Chief of Naval Operations

Commander, U.S. Fleet Forces Command

COMNAVMETOCCOM (CNMOC)
Stennis Space Center, MS

Fleet Numerical Meteorology And Oceanography Center (FNMOC)
Monterey, CA

Naval Oceanography Operations Command (NOOC)
Stennis Space Center, MS

U.S. Naval Observatory (NAVOBSY)
Washington, DC

Naval Meteorology and Oceanography Professional Development Center (NMOPDC)
Gulfport, MS

Naval Oceanography Office (NAVOCEANO)
Stennis Space Center, MS
METOC Enterprise – What we do

• Mission
 – To provide an asymmetric war fighting advantage through the application of Oceanographic sciences.

• Enabling Asymmetric Advantage
 – A Navy strength... the ability to apply Oceanography to battle problems and challenges in order to leverage knowledge of the environment for an advantage

• Navy METOC... an information supply chain
 – The information supply chain is our enterprise.
Battlespace on Demand

Tier 3 – the Decision Layer
- Options / Courses of Action
- Sensor Employment
- Asset Allocation / Timing
- Quantify Risk

Tier 2 – the Sensor Performance Layer

Tier 1 – the observed and forecast Environment Layer

We must make better decisions faster than the adversary
SOA Transformations

• **Net-Centric Operations & Warfare = Process Transformation**
 - New collaboration, decision, information sharing processes

• **SOA = IT Transformation**
 - New architectural layer
 - New acquisition, development & integration processes
 - New technologies & skills
SOA is about integration... at the METOC edges... ABSTRACTION

Major Integration Points (external or internal):

Those data, logic, control, process capabilities that if exposed:

- would be useful to multiple users, at multiple locations, and/or in multiple contexts
- would support the composition of new capabilities across systems with heterogeneous implementation technologies
- would mitigate high changeability expectations between integration participants
Readiness for SOA

1. **It is relatively easy to develop and deploy a web service built around XML data representations**

2. **It is harder to build a web service that is discoverable, reusable, scalable, extensible for broader contexts**

3. **It is a significant technical and management challenge to develop and deploy a portfolio of reusable services; and to build capability from others’ portfolios of services… this is the essence of a Service Oriented Enterprise and underpins the concept of the GIG/Fn**
METOC SOA Strategy

- **Pick the right “pathfinder” projects**
 - Incrementally develop and apply skills
 - Manage Cost, Complexity & Risk (CCR)
 - Ensure “visible” warfighter value
 - Ensure ready “services” consumer

- **Prepare for the enterprise solution**
 - Modeling the METOC Enterprise Service Integration Layer (MESIL)
 - Concurrent development of enabling enterprise standards
 - Service taxonomy, service naming/description, SLA elements, etc.
 - Clarifying METOC ESB Strategy

- **Find efficiencies**
 - Outsource to GIG/Fn infrastructure (an important given)
 - Create effective alignment mechanisms – reduce redundancy/maximize reuse
 - Minimize costs for required “non-core” IT functionality
 - Internal infrastructure hardware and software
Foundational GI&S Data (Static Characterization)

- Space (Astrometry)
- Atmosphere Characterization
- Ocean Characterization
- Nav Data
- Imagery
- Terrain

Exposed COI Services & Spaces

GIG Enterprise Core Services

- Dynamic Force and Threat Information
- Dedicated Sensors
- Thru The Sensor Data
- On scene Processing
- Geo-temporal Tags

Virtual COEs offer added-value data brokerage & knowledge services using posted data from METOC Centers & other COIs:

- Joint Virtual METOC Database
- Domain Authority Assessment
- Mission-specific Environmental Alerts
- Visualization Services

DOD Centers

Use Agents • ASW Mission Alerts
• NSW Mission Agents
Data Strategy

• **SOA data services based**

• **Guided by DoD and Navy policies for managing data in a net-centric environment**

 – Make data visible, available and usable where needed and when needed to accelerate decision making

 – Tag data with metadata to assist with discovery

 – Post to shared spaces except where limited by security, policy or regulation

 – Promote interoperability by enabling many-to-many exchanges vice point-to-point
Data Strategy

Navy Battlespace on Demand Framework

Tier 3 – the Decision Layer
• Options / Courses of Action
• Search Patterns
• Asset Allocation / Timing
• Quantify Risk

Tier 2 – the Performance Layer

Tier 1 – the (forecast) Environment Layer

Initial and Boundary Conditions

“OGC”

“JMBL”

Naval Oceanography
Current Navy Implementation Details

NAVO’s Naval METOC Data Services Framework (NMDSF)
- 1 data service operational (JMBL-based)
 - 36 information elements available (forecast and OAML)
- Single access point to Navy METOC data holdings – FY 09

FNMOC’s CAGIPS
- 1 data service operational (JMBL-based)
 - 144 information elements (forecast)
- Legacy APIs exist

OGC-based services
- WMS for ASW performance surface to become operational – FY09
- WFS prototype in FY09 – should be operational – FY10

Several others emerging… e.g.
- bottom characteristics
- optimal routes
Net-Centric METOC Operations Timeline

1991

DoDD 8320.1

No Interoperability

1991 2008 2009 +

DoDD 8320.2

Net-centric Joint METOC

WMO Data Exchange Standards Adopted

Strategic Center Data Exchange

United States of America, Department of Defense

JM CDMA

JMBL

JM WSDL

JM Taxonomy/Ontology

DoD MDR Registration

Restructured JMB under Joint Staff

 JM CONOPS

JM JCD

UMCore, GML and OGC

FAA/NWS adopt JMBL

FAA’s NextGen

Major DoD Programs

JM Services Definition

JM Domain Authority

JM Capabilities Access Point

FAA’s NextGen